AP1.8 CVD growth of single layer graphene on α-Al₂O₃ and multiscale analysis of MoS₂/Graphene/α-Al₂O₃ 2D-layer stacks

Henrik Wördenweber ^{1,2}, Zhaodong Wang ^{1,2}, Silvia Karthäuser ¹, Annika Grundmann ³, Holger Kalisch ³, Andrei Vescan ³, Michael Heuken 3,4, Rainer Waser 1,2, Susanne Hoffmann-Éifert 1

¹ Peter Grünberg Institute 7&10, Forschungszentrum Jülich GmbH and JARA-FIT, 52425 Jülich, Germany; ² RWTH Aachen University, 52074 Aachen, Germany; ³ Compound Semiconductor Technology, RWTH Aachen University, 52074 Aachen, Germany; ⁴ AIXTRON SE, 52134 Herzogenrath, Germany

Introduction

Exploratory research on the utilization of the new class of 2D-materials for application in memristive devices and beyond von Neumann computing concepts has gained rising interest [1].

Key achievements towards this goal comprise:

- (1) Industrial-compatible large-scale device
- manufacturing of the van der Waals-materials [2]. (2) Direct growth of functional and conductive 2Dmaterial stacks on CMOS-compatible substrates.
- (3) Large-scale transfer processes.

Metal organic chemical vapor deposition (MOCVD & CVD) of graphene, transition metal dichalcogenides (TMDC) and hexagonal boron nitride on CMOS-compatible substrates like α -Al₂O₃ is a promising approach to reach key factors (1) and (2). Further support comes availability of specialized commercial CVD reactors [3].

Direct growth of functional 2D-layer stacks enables control and design of interface properties. The aim is to maintain the high interface quality after transfer and integration of the stacks with CMOS-based circuits [4,5].

Here, we study CVD grown single layer graphene (SLG) on α -Al₂O₃ and MOCVD of MoS₂ thereon. SLG / α-Al₂O₃ was grown at AIXTRON SE and in the NEUROTEC MOCVD reactor JULE at FZJ. MoS₂ on SLG / α -Al₂O₃ was provided by CST at RWTH Aachen. A multiscale analysis of layers was performed to understand local and extended inter layer bindings and defects, their influence on wafer-scale performance and their impact on the local electronic device properties.

MoS₂ on SLG/ α -Al₂O₃

MoS₂ crystals in

growth

shapes

layers

Hexagonal

Often multiple

MoS₂ growth is

of the underlying

with the different

MoS₂ (G-II)

sapphire structure

graphene regions.

almost independent

the early stage of

Scanning Electron Microscopy (SEM)

Scanning Tunneling Microscopy (STM)

MoS₂

(G-I)

G-I

MoS₂

(G-II)

Single layer MoS₂

at the atomic scale

doesn't show defects.

Bandgap analysis via STS

50 nm

CVD of Graphene on Sapphire

JULE - JUelich advanced tool for 2D-Layer Epitaxy

Different kinds of 2D materials can be fabricated:

Schematic illustration

MCO

Carrier gas

Carrier gas

DTBS DIPSe

- 6x2" Closed Coupled Shower head MOCVD system with cold wall.
- Various wafer sizes: 10x10 mm² to 100 mm in diameter.

Reactor chamber

Exhaust

Temperature 1400 °C

Ambient gas – Argon

Pressure 500 mbar

Time 160 s

 CH_4 : H_2 = 1: 13.3

Graphene on Sapphire

Two different binding regimes of SLG on α -Al₂O₃ could be identified, which have an influence on the atomic and macroscopic scale:

G-I: Weakly bonded graphene on the sapphire terrace G-II: Nearly free standing SLG close to the step edges

AFM topography (contact mode)

AFM conductivity

 Slight influence on the topography

Difference in conductivity by a factor of 4.

Sapphire substrate **Characterization of SLG quality**

Graphene, WS₂, MoS₂, hBN...

CVD process for **SLG** in **JULE**

Raman - Graphene _{2D} 1000 1400 1600 1800 2000 2200 2400 2600 2800

Wrinkles or folds Raman shift (cm⁻¹) $I_D/I_G = 0.16 - low defect density$ Detached graphene $I_{2D}/I_{G} = 2.2 - \text{monolayer graphene}$ at sapphire steps

Scanning Tunneling Microscopy (STM)

2.5 [eV] 2.4 Bandgap 2.3 2.1 16 Position

The different graphene regions have a measurable influence on the electric properties of the MoS₂ on top.

Internal Collaborations

Exchange of samples for characterization and growth.

> Exchange of MOCVD process parameters and analysis results for an understanding of the substrate-film interactions.

Understanding of graphene properties on the MOCVD overgrowth of subsequent 2D-material.

Supply of CVD graphene for transfer.

Analysis of resistive switching properties of graphene/TMDC structures in STM and comparison with results obtained for macroscopic devices.

Exchange of characteristic switching parameters for device simulation.

Contribution to Milestone

Multiscale analysis of grown 2D-material layers and layer stacks for memristive device applications

- MOCVD growth of high quality graphene on sapphire in the MOCVD reactor JULE funded by NEUROTEC.
- Multiscale analyzes of graphene grown on sapphire with identification of two graphene regions which differ in binding and electronic properties.
- SLG / α-Al₂O₃ samples delivered to CST/RWTH for TMDC over growth.
- Multiscale analysis of MoS₂ / SLG / α -Al₂O₃ graphene with the focus on defects and electrical properties.

Further studies

- Localized switching behavior of the MoS₂ flakes.
- Comparison of MoSe₂, WSe₂, and MoS₂ in respect of growth and electrical properties.
- MOCVD of hBN in JULE.

References

- [1] F. Hui et al., Adv. Electron. Mater., 2017, 6, 1600195
- [2] S. Entani et al., Nano Research, 2015, 8, 1535
- [3] N. Mishra et al., Small 2019, 15, 1904906
- [4] D. S. Schneider et al., ACS Photonics, 2020, 7, 1388
- [5] Z. Dou et al., Nature Communications, 2019, 10, 5013.

